

Generative Pretrained Hierarchical Transformer for Time Series Forecasting

Zhiding Liu¹, Jiqian Yang¹, Mingyue Cheng^{1,*}, Yucong Luo¹, Zhi Li² ¹State Key Laboratory of Cognitive Intelligence, University of Science and Technology of China, Hefei, China ²Shenzhen International Graduate School, Tsinghua University, Shenzhen, China

Task: Time series forecasting

Given the observation of past S time steps, predict the values of future T steps.

Motivation

Datasets

- (Pre-)Training on a single dataset, leading to suboptimal forecasting accuracy and transferability.
- **One-step generating schema**
 - A customized head is required for each forecasting task, hindering the generalizability of the pretrained models.
 - The **temporal dependencies within the predicted series** are inevitably overlooked, potentially leading to an inferior result.

Can we explore training a single unified forecasting model that generalizes well across diverse data scenarios and **forecasting settings**?

Method: Generative Pretrained Hierarchical Transformer

A. Pretraining Dataset

- Adopts the **channel-independent** assumption.
- Extend the methodology to the construction of the mixed pretraining dataset, treating time series originating from various scopes as a whole and no extra information is taken into account.
- The strategy can be therefore seamlessly applied to more diverse scenarios where the covariate information may be missing and the data itself may be synthetic.

Illustration of the architecture of GPHT

C. The Optimization Target

B. The Hierarchical Structure

- We introduce a **token-level multi-stage** representation learning approach using hierarchical transformer blocks, where the sampling rate of each block varies.
- Can better capture the **multi-scale represent**ation of input series and better discover commonalities hidden within mixed datasets comprising various data scenarios.
- In pretraining, we formulate the pretraining task as a standard language modeling task, employing a token-wise auto-regressive loss function as the optimization target to fully leverage the mixed dataset and better capture temporal dependencies.
- In finetuning, we adopt a parameter-efficient tuning strategy where only the forecasting heads are updated to strike a balance between

maintaining generalizability and improving performance on a specific dataset.

					Experim	ents			
Type Methods Metric 96 192 336 720 96 192 336 720 192 336 720 96 192 336 720 192 336 720	OursGPHT*GPHTMSEMAEMSEMAE0.1280.2190.1280.219 0.147 0.2360.1460.2360.1650.2550.1650.2550.2060.2920.2070.2920.096 0.216 0.0870.2070.1830.304 0.172 0.296 0.322 0.410 0.3090.400 0.333 0.685 0.8080.669 0.348 0.236 0.3460.234 0.374 0.248 0.3710.246 0.392 0.2590.388 0.256 0.428 0.284 0.4230.279	Self-supervised FPTPatchTST FPT Sim/TMSEMAEMSEMAEMSEMAE0.1320.2250.1390.2380.13300.1480.2410.1550.2520.14700.1670.2600.1700.2670.16600.2050.2920.2080.2990.20300.1860.3080.2090.3270.10000.3740.4460.3980.4630.38900.3850.2610.4110.2870.37300.4090.2750.4230.2930.39500.4380.2910.4490.3070.4320	TimeMAE MAE MSE MAE 0.223 0.133 0.230 0.237 0.150 0.246 0.265 0.166 0.265 0.297 0.199 0.296 0.226 0.229 0.352 0.332 0.653 0.581 0.460 1.524 0.887 0.800 2.525 1.193 0.262 0.365 0.252 0.251 0.383 0.260 0.290 0.438 0.291	$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$	upervisedtmerTimesNetDLinearAEMSEMAEMSEMAE228 0.177 0.281 0.141 0.238 249 0.193 0.295 0.154 0.251 267 0.206 0.306 0.170 0.269 296 0.223 0.320 0.205 0.302 225 0.166 0.305 0.087 0.217 329 0.303 0.413 0.164 0.298 448 0.445 0.511 0.333 0.437 746 1.389 0.899 0.988 0.749 266 0.600 0.323 0.411 0.284 271 0.612 0.327 0.423 0.297 291 0.657 0.349 0.467 0.316	$\begin{array}{ c c c c c c c c } \hline Methods & GP \\ Metric & MSE \\ \hline MSE \\ \hline Metric & MSE \\ \hline 192 & 0.098 \\ \hline 192 & 0.183 \\ \hline 336 & 0.321 \\ \hline 720 & 0.824 \\ \hline 192 & 0.435 \\ \hline 336 & 0.460 \\ \hline 720 & 0.521 \\ \hline 192 & 0.248 \\ \hline 336 & 0.306 \\ \hline 720 & 0.389 \\ \hline \end{array}$	HT FPT PatchTST DLinear MAE MSE MAE MSE MAE MSE MAE 0.219 0.104 0.226 0.102 0.227 0.169 0.316 0.305 0.218 0.333 0.205 0.325 0.230 0.374 0.411 0.391 0.460 0.362 0.440 0.334 0.444 0.682 0.978 0.734 0.991 0.745 0.560 0.591 0.291 0.447 0.331 0.433 0.314 0.453 0.328 0.302 0.461 0.335 0.447 0.319 0.464 0.330 0.316 0.477 0.343 0.465 0.329 0.481 0.340 0.353 0.503 0.356 0.504 0.354 0.506 0.351 0.283 0.260 0.301 0.257 0.299 0.275 0.325 0.324 0.328 0.351 0.340 0.350 0.323 0.360 0.377 0.414 0.403 0.414 0.402	W/pretrain w/ 0.500 0.450 0.450 0.300 0.250 0.200 0.150 0.100 0.050 0.000 +the million to the million of the millio	o pretrain
Portion Methods	CPHT FPT	5% SimMTM PatchTST iTrans	former CPHT	10% EPT SimMT	M PatchTST iTransformer	[[
Metric	MSE MAE MSE MAE	MSE MAE MSE MAE MSE	MAE MSE M	AE MSE MAE MSE M	IAE MSE MAE MSE MAE	Methods	Params	Training Time(per epoch)	Inference Speed(itr/s)
96 192 336 720 96 192 336 720 96 192 336 720	0.143 0.237 0.148 0.246 0.162 0.254 0.163 0.259 0.184 0.275 0.181 0.277 0.238 0.321 0.231 0.315 0.383 0.390 0.478 0.474 0.426 0.416 0.705 0.577 0.453 0.430 0.736 0.571 0.433 0.440 0.718 0.579	0.1520.2550.1880.2920.1550.1670.2680.2020.3040.1720.1870.2870.2190.3180.1970.2400.3260.2640.3510.2610.5370.5020.5050.4810.5800.5800.5250.5760.5140.6700.6030.5430.6720.5540.7260.7080.5970.7590.6250.802	0.2560.1400.20.2720.1590.20.2950.1800.20.3440.2310.30.5200.3820.30.5570.4240.40.5770.4500.40.6260.4270.4	33 0.149 0.248 0.146 0.3 50 0.164 0.261 0.163 0.3 71 0.183 0.280 0.184 0.3 13 0.234 0.318 0.242 0.3 91 0.453 0.454 0.482 0.4 18 0.522 0.494 0.532 0.4 43 0.571 0.522 0.561 0.4	.246 0.147 0.245 0.148 0.247 .262 0.162 0.258 0.167 0.266 .280 0.181 0.276 0.192 0.290 .325 0.230 0.315 0.244 0.329 .467 0.450 0.448 0.557 0.514 .498 0.523 0.489 0.668 0.562 .523 0.523 0.494 0.684 0.559 .617 0.508 0.502 0.709 0.587	GPHT FPT SimMTM PatchTST iTransformer TimesNet	37.98M(pretraining)/98.50K(finetuning) 105.20M(24.00M trainable) 62.14M(pretraining)/7.76M(finetuning) 4.27M 5.28M 150.64M	20min(pretraining)/254.1s(finetuning) 3858.8s(finetuning) 73min(pretraining)/946.5s(finetuning) 128.9s 24.7s 1179.6s	0.34 0.69 5.98 9.02 26.39 1.51
						Computation cost comparison			

Main results & Few-shot evaluation

ACM KDD 2024 | Barcelona, Spain