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Introduction

Meta introduced the CRAG with QA pairs, web pages, and Mock APIs to simulate Knowledge Graph (KG) search, hosting the KDD CUP
2024 Challenge to address these 1ssues. We achieved a ranking of 2nd out of 384 teams 1n task?2, task3 and over all ranking 1n the automatic

evaluation.
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RAG (Retrieval-Augmented Generation) enhances LLM with external
knowledge. It evolves from Naive to Advanced to Modular stages:

1. Naive RAG: Uses "Retrieve-Read" framework, facing retrieval precision
and content hallucination 1ssues during generation.
2. Advanced RAG: Improves retrieval quality with pre- and post-retrieval
strategies, focusing on essential information selection.
3. Modular RAG: Integrates specialized modules and new patterns for
enhanced retrieval relevance and task performance, promoting adaptability and
efficiency across tasks.

Methodology
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Framework of our solution

Key Components
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We use an embedding model
for web page retrieval and the
KG API with NER to identify

entities and access domain-
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Stage

Phase 1a

Phase 1b

Phase 2
(Final Solution)

Knowledge Acquisition and
Parsing

BoilerPy for web page parsing
without KG

Newspaper3k for web page
parsing, formatting KG-
retrieved info as text with web

Page

Newspaper3k for web page
parsing, manually refining KG
info separately from web page

Knowledge Storage and
Retrieval

All-MiniLM as embedding
model

BGE as embedding model,
BGE-Rerank for reranking

BGE as embedding model,
BGE-Rerank for reranking,
adding KG info after web
page retrieval

Inference Based on
LLM

Basic RAG instructions

CoT inference with
Intermediate reasoning
in outputs;

Agent inference

CoT inference with
few-shot examples

Progression of Stages in the Competition

Interesting finding: Despite agents being effective for reasoning,
time constraints and uncontrolled iteration cycles led us to choose
CoT with few-shot examples for in-context learning.

Experiments

Table 3: Overall Preformance of our solutions on all 3 Tasks.

specific APIs, then combine
results with web references.
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task 3,
candidate web pages, BM25
first retrieves the top 50 large
chunks, then Dense retrieve
selects the top k small chunks

out

of 50

*  CoT Instruction: Created a Chain of Thought (CoT) prompt to
guide the LLM 1n structured responses based on web references.

 In-context Learner: Developed adaptive few-shot examples to
enhance the LLM's accuracy in handling factual errors across

domains.

Score(%) Accuracy(%) Hallucination(%) Missing(%)

LLM Only -7.29 28.01 35.30 36.69

RAG Baseline -6.78 34.79 41.58 23.63

Task 1 11.82 29.98 18.16 51.86

Task 2 31.22 46.75 15.54 37.71

Task 3 31.66 48.21 16.56 35.23
Table 4: Ablation Study for Prompt Construction on Task 2.

Score(%) Accuracy(%) Hallucination(%) Missing(%)

w/0o Fewshot&CoT 25.53 52.08 26.55 21.37

w/o Fewshot 27.13 51.35 24.22 24.43

w/o CoT 28.52 53.32 24.80 21.88

Task 2 31.22 46.75 15.54 37.71
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