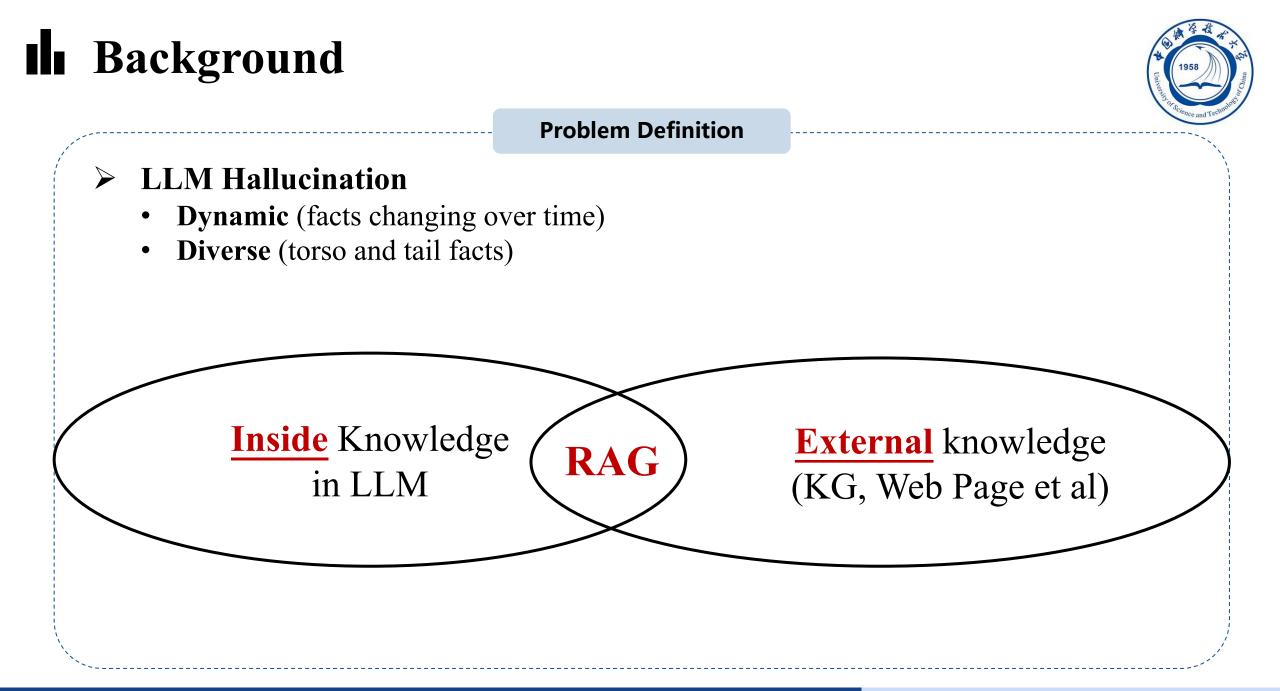


Revisiting the Solution of Meta KDD Cup 2024 : CRAG

Jie Ouyang, Yucong Luo, <u>Mingyue Cheng</u>*, Daoyu Wang, Shuo Yu, Qi Liu, and Enchong Chen

State Key Laboratory of Cognitive Intelligence, University of Science and Technology of China (USTC)

> Team APEX for Task 2&3



Main Challenges

Challenges of Retrieval-Augmented Generation

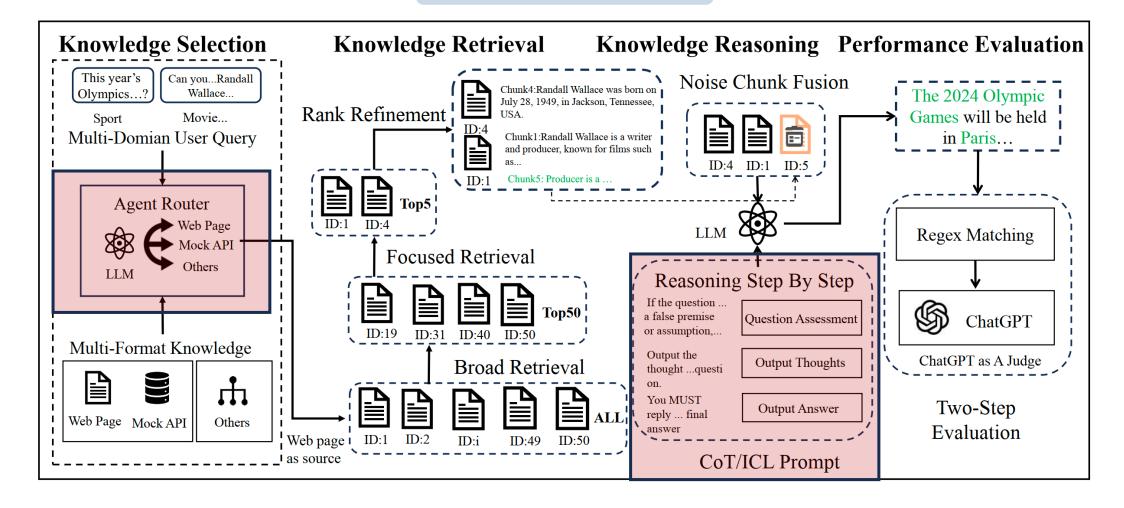
- 1 Knowledge Indexing: GraphRAG
- 2 Knowledge Retrieve: sparse, dense or hybrid retrieval
- ③ LLM Reasoning: Chain of –thought (CoT), In-context Learning (ICL)

CRAG - Comprehensive RAG Benchmark

Xiao Yang^{*1}, Kai Sun^{*1}, Hao Xin^{*3}, Yushi Sun^{*3}, Nikita Bhalla¹, Xiangsen Chen⁴, Sajal Choudhary¹, Rongze Daniel Gui¹, Ziran Will Jiang¹, Ziyu Jiang⁴, Lingkun Kong¹, Brian Moran¹, Jiaqi Wang¹, Yifan Ethan Xu¹, An Yan¹, Chenyu Yang⁴, Eting Yuan¹, Hanwen Zha¹, Nan Tang⁴, Lei Chen^{3,4}, Nicolas Scheffer¹, Yue Liu¹, Nirav Shah¹, Rakesh Wanga¹, Anuj Kumar¹, Wen-tau Yih², and Xin Luna Dong¹

¹Meta Reality Labs, ² FAIR, Meta, ³ HKUST, ⁴ HKUST (GZ)

I Methodology



Knowledge Selection

Routing is a crucial component of RAG systems, especially in real-world QA scenarios. In practical applications, RAG systems frequently incorporate multiple data sources.

In response to the specific characteristics of the questions in the CRAG Challenge, we designed two specialized routers: the **Domain Router** and the **Dynamism Router**.

Domain Router

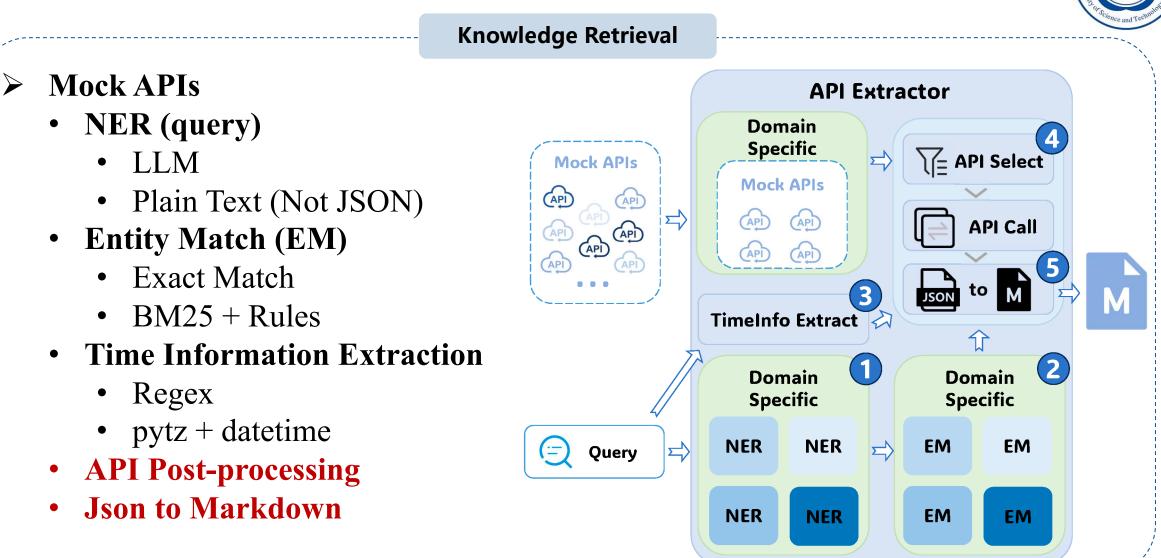
(SequenceClassifier) (Llama3-8B-Instruct) (LORA) LLM Rather than LM

Domain&Dynamic

Dynamism Router

(SequenceClassifier) (Llama3-8B-Instruct) (LORA)

Methodology Knowledge Retrieve Task 3 Web Pages **Web Retriever Top 50** HTML Large Chunks Text **BM25** HTML Large Chunks Split **Pre-rank** Parse Split 3 5 Dense Rerank Тор К lop Small Chunks Retrieve **Small Chunks Small Chunks**



I Methodology

Task 2&3

Methodology

- Chain of Thought (CoT)
 - Think Step by Step!
- In-context Learning
 - Few-shot examples (e.g., <u>false</u>
 <u>premises</u>)
 - Adaptive for different domains
- Post-Processing
 - **Domain&Dynamism** Specific
 - Reject complex numerical calculations (I don't know)

Few-shot Example I

Knowledge Reasoning

What's the latest score for OKC's game today?

There is no game for OKC today.

Few-shot Example II

How many times has Curry won the NBA dunk contest?

Steph Curry has never participated in the NBA dunk contest.

_ _ _ _ _ _


~~~~~~	Experimental Settings			
Components	Our choi	ce		
<b>HTML Parser</b>	Newspape	er3K		
<b>Embedding Model</b>	BAAI/bge	- <i>m3</i>		
<b>Rerank Model</b>	BAAI/bge	-m3-v2-reranker		
LLM	Llama3-7	0B-Instruct (GPTQ)		
Task 2:	Task 3:			
Building on Task 1, we concate	enate Building of	Building on Task 2, we first use <b>BM25</b> to		
the references retrieved from HT	ΓML select the	select the <b>50</b> most relevant passages, and		
with those retrieved from the M	ock API. then apply	then apply <b>embedding model</b> to narrow		
	it down to	it down to the 5 most relevant ones.		



#### **Experimental Results**

#### > Overall Performance

#### Table 1: Overall Preformance of our solutions on all 3 Tasks.

	Score(%)	Accuracy(%)	Hallucination(%)	Missing(%)
LLM Only	-7.29	28.01	35.30	36.69
Direct RAG	-6.78	34.79	41.58	23.63
Task 1	11.82	29.98	18.16	51.86
Task 2	31.22	46.75	15.54	37.71
Task 3	31.66	48.21	16.56	35.23



**Experimental Results** 

### > Ablation Study for Major Strategies

Table 2: Ablation Study for Major Strategies Employed in the System.

		Score(%)	Accuracy(%)	Hallucination(%)	Missing(%)	Time Cost(s)
Task 2	w/o Rerank	29.17	43.54	14.37	42.09	-
	w/o EntityMatch	21.44	32.31	10.87	56.82	-
	w/o TimeInfoExtract	18.45	28.45	9.99	61.56	-
	w/o Fewshot&CoT	25.53	52.08	26.55	21.37	-
	w/o Fewshot	27.13	51.35	24.22	24.43	-
	w/o CoT	28.52	53.32	24.80	21.88	-
	Ours	31.22	46.75	15.54	37.71	-
Task 3	w/o Prerank	29.53	44.34	14.81	40.85	68.17
	Ours	31.66	48.21	16.56	35.23	5.96

# Conclusion



#### **Our Perspectives**

## The quality of knowledge source is significant

- Traditional QA evaluation often overlooks hallucinations.
- Future focus: Assessing models' cognitive abilities using methods from human cognition research.

## How to retrieve relevant knowledge as context is the core of RAG

- Manual rules for API matching may fall short in real-world usage.
- Future focus: Developing universal methods for selecting and calling APIs, processing results effectively.

## The capacity of LLM can be roughly divided into denosing and reasoning

- Denoising: reducing the noise from numerous context.
- Reasoning: extracting useful knowledge from the limited context. **Teaching the LLM know what they do not know is very important.**
- Evaluation of hallucination is very vital.



# **Thank You for Your Attention!**

Mingyue Cheng mycheng@ustc.edu.cn https://mingyue-cheng.github.io/