
FormerTime: Hierarchical Multi-Scale Representations for
Multivariate Time Series Classification

Mingyue Cheng1, Qi Liu1∗, Zhiding Liu1, Zhi Li2, Yucong Luo1, Enhong Chen1
1Anhui Province Key Laboratory of Big Data Analysis and Application, University of Science and Technology of China

& State Key Laboratory of Cognitive Intelligence, Hefei, China,
2 Shenzhen International Graduate School, Tsinghua University, Shenzhen, China

{mycheng,doge,prime666}@mail.ustc.edu.cn,{qiliuql,cheneh}@ustc.edu.cn,zhilizl@sz.tsinghua.edu.cn

ABSTRACT
Deep learning-based algorithms, e.g., convolutional networks, have
significantly facilitatedmultivariate time series classification (MTSC)
task. Nevertheless, they suffer from the limitation in modeling long-
range dependence due to the nature of convolution operations.
Recent advancements have shown the potential of transformers to
capture long-range dependence. However, it would incur severe
issues, such as fixed scale representations, temporal-invariant and
quadratic time complexity, with transformers directly applicable to
the MTSC task because of the distinct properties of time series data.
To tackle these issues, we propose FormerTime, an hierarchical
representation model for improving the classification capacity for
the MTSC task. In the proposed FormerTime, we employ a hierar-
chical network architecture to perform multi-scale feature maps.
Besides, a novel transformer encoder is further designed, in which
an efficient temporal reduction attention layer and a well-informed
contextual positional encoding generating strategy are developed.
To sum up, FormerTime exhibits three aspects of merits: (1) learn-
ing hierarchical multi-scale representations from time series data,
(2) inheriting the strength of both transformers and convolutional
networks, and (3) tacking the efficiency challenges incurred by the
self-attention mechanism. Extensive experiments performed on 10
publicly available datasets fromUEA archive verify the superiorities
of the FormerTime compared to previous competitive baselines.

CCS CONCEPTS
• Computing methodologies → Neural networks; • Mathe-
matics of computing→ Time series analysis.

KEYWORDS
Multivariate time series classification, Time series representations,
Self-attention mdoels

Qi Liu is corresponding author. Our experiment codes are available at
https://github.com/Mingyue-Cheng/FormerTime.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’23, May 1–5, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9416-1/23/04. . . $15.00
https://doi.org/10.1145/3543507.3583205

1 INTRODUCTION
Multivariate time series [16, 20, 50] are ubiquitous for many web
applications [35, 47], which are sequences of events acquired longi-
tudinally and each event is constituted by observations recorded
over multiple attributes. For example, the electrocardiogram (ECG)
signals [33] in electronic health records (EHRs) can be formulated
as multivariate time series data since they can be obtained over
time and multiple sensors. Comprehensive analysis of such data
can facilitate decision-making in real applications [27, 30], such
as human activity recognition, healthcare monitoring, and indus-
try detection. Particularly, multivariate time series classification
(MTSC) tasks, as one fundamental problem of time series analysis,
received significant attention in both academia and industry.

Accordingly, numerous efforts [36, 49] have been devoted to
the MTSC problem over the last decades. In general, most of these
current works can be divided into two categories: pattern-based
and feature-based models. The former type usually extracts useful
bag-of-patterns or shapelet patterns from the whole time series,
and then transforms these extracted patterns into features to be
used as inputs for the classifier. Since they are generated in raw
time series, the corresponding patterns are often interpretable. The
main concern is the often-incurred expensive computation cost
during the process of pattern extraction. In contrast, feature-based
methods can be very efficient and can be scaled to large-scale time
series data but their classification capacity greatly depends on the
effectiveness of labor-intensive features based on domain experts.

Hence, researchers begin to explore more expressive feature
maps for improving classification capacity. Deep learning-based
models [6, 17, 22, 24, 39, 49, 50] have achieved remarkable success
and have become ever-increasingly prevalent over past advance-
ments. The main reason is that discriminative features related to
time series can be learned in an end-to-end manner, which sig-
nificantly saves manual feature engineering efforts. Among them,
convolutional-based methods nearly have become the dominant ap-
proach due to the strong representation capacity of convolution op-
erations [6, 31]. In general, the strengths of convolutional models in
performing time series classification can be summarized as follows:
(1) convolutional networks can easily learn multi-scale representa-
tions by controlling the strides of convolutional kernels [42], and
preserve the capacity of temporal-invariant via the weight-sharing
mechanism, which are of great significance for MTSC tasks; (2)
Very deep convolutional networks can be stacked by employing
residual connections, enabling larger receptive fields for capturing
the sequence dependence; (3) Convolution operations can be effi-
ciently computed without suffering from limitations of sequence
length or instance number, and thus can be easily scaled to massive

https://doi.org/10.1145/3543507.3583205

WWW ’23, May 1–5, 2023, Austin, TX, USA Mingyue Cheng et al.

datasets. Despite their effectiveness, we argue that the classification
performance is still restricted in failing to capture global contexts
in convolution operation.

Recently proposed transformer architecture [40, 44] have shown
promising capacity in capturing global contexts for language mod-
eling tasks. Motivated by this, we seek to transfer the powerful
capacity of transformers from language domain to time series. How-
ever, it would easily incur severe issues in applying the transformer
to the MTSC problem. First, in language transformers, only fixed-
scale representations can be learned since word tokens serve as
the basic elements. By contrast, the information density of a single
object in time series is too small to reflect helpful patterns related
to class labels. Taking an example in ECG classification, informa-
tive patterns are typically characterized by a series of continuous
points or various sub-series instead of a single point. As such, multi-
scale feature maps [37] are necessary and can take a significant
influence on the classification capacity. Second, the capacity of
temporal-invariant is largely weakened in vanilla transformers
since self-attention is permutation-variant, which may also restrict
the final performance [29]. Last, the sequence length of time se-
ries usually can be much longer than language sentences, which
inevitably incurs an expensive computation burden since the time
and memory complexity of the self-attention mechanism in the
transformer architecture is quadratic to the sequence length input.
Though some pioneering efforts [26, 38, 48] based on transformers
have been devoted before, the problems discussed above are still
under exploration in the MTSC task.

To tackle these severe issues, in this work, we present Former-
Time, a hierarchical transformer network for the MTSC task. Specif-
ically, we design a hierarchical structure by dividing the whole net-
work into several different stages, with different levels of scales as
input. We also develop a novel transformer encoder to perform hid-
den transformation with two distinct characteristics: (1) we replace
the standard self-attention mechanism with our newly designed
temporal reduction version to save computation cost; (2) we design
a context-aware positional encoding generator, which is designed
to not only preserve the order of sequence input but also enhance
the capacity of temporal-invariant of the whole model. In general,
our FormerTime exhibits the following merits. First, in contrast to
convolutional-based classifiers, FormerTime always yields a global
reception field, which is useful for capturing the long-range depen-
dence and interaction of the whole time series. Second, FormerTime
can conveniently learn time series representations on various scales
via its hierarchical architecture. Third, in the FormerTime, the in-
ductive bias of temporal-invariant is well enhanced by leveraging
the contextual positional generators. More importantly, the compu-
tation consumption of FormerTime is largely saved, and could be
acceptable even for very long sequences.

To evaluate the effectiveness of the FormerTime, we conduct
extensive empirical studies on 10 public datasets from the UEA
archive [2]. The experimental results clearly show that FormerTime
can yield strong classification performance in average. It signifi-
cantly outperforms compared strong baselines. In summary, we
initially demonstrate the potential of transformers in the MTSC
problem. To the best of our knowledge, we first the few attempts of
transformer-based models in breaking the efficiency bottleneck and

achieving great performance improvements. We hope our work can
facilitate the study of applying transformers to the MTSC problem.

2 RELATEDWORK
2.1 Time Series Classification
Tremendous efforts have been devoted to time series classification.
Generally speaking, previous works can be roughly divided into
two types: pattern-based and feature-based methods. Pattern-based
methods typically first extract bag-of-patterns [34] or shapelet
patterns [46], and then feed them into a classifier. For example,
shapelet-based methods usually extract some useful subsequence,
which is distinctive for different classes. Then, distance metrics are
employed to generate features for classification. DTW has been
proved as an effective distance measurement in time series classifi-
cation. Recently proposed work [34] uses symbolic Fourier approx-
imation to generate discrete units for classification. The strength
of these methods is that the generative patterns are usually in-
terpretable [10] while the largest weakness [3, 49] is inevitablely
incurring expensive computation in producing discriminative pat-
ter features. A series of methods have been proposed to overcome
this weakness by either speeding up the computation of distance
or constructing the dictionary [46]. In contrast to pattern-based
methods, feature-based methods can be more efficient by depending
on hand-crafted static features based on domain experts. However,
it is difficult to design good features to capture intrinsic proper-
ties embedded in various time series data. Therefore, the accuracy
of feature-based methods is usually worse than that of sequence
distance-based ones. Recently, extracting time series feature with
deep neural networks [22, 24, 50] gradually become prevalent in
time series classification tasks. As a pioneering attempt, multi-
channel convolutional networks [50] have been proposed to deal to
capacity of classification for the MTSC problem. Later, a series of
convolutional-based methods, like ResNet [19], InceptionTime [23]
have also proposed to achieve remarkable success due to their
powerful representation ability in extracting time series features.
ROCKET [12] employs random convolution kernels to train linear
classifiers and has been recognized as a powerful method in recent
empirical studies [31]. Other than pure convolutional based meth-
ods, [24] perform time series classification by designing a hybrid
network, in which both the LSTM layer and stacked convolutional
layer along with a squeeze-and-excitation block are simultaneously
used to extract features. Besides, mining graph structure among
time series with graph convolutional networks for comprehensive
analysis have also attracted some researchers [15, 45].

2.2 Transformers in Time Series.
Designed for sequence modeling, the transformer network [40] re-
cently achieves great success in nature language processing (NLP).
Among multiple advantages of transformers, the ability to capture
long-range dependencies and interactions is especially attractive
for time series modeling. Hence, a large body of transformer-based
methods [43, 51] has been proposed by attempting leveraging trans-
formers for time series forecasting or regression. For time series
classification, recent advancements still lie in the early stage and
mainly focus on multivariate time series classification. [32] studies
the transformer for raw optical satellite time series classification

FormerTime: Hierarchical Multi-Scale Representations for Multivariate Time Series Classification WWW ’23, May 1–5, 2023, Austin, TX, USA

and obtains the latest results comparing with convolution-based so-
lutions. GTN [26] explores an extension of the transformer network
by modeling both channel-wise and step-wise correlations, simulta-
neously. Besides, pre-trained transformers are also investigated in
time series classification tasks. For example, TST [48] employs the
transformer network to learn unsupervised representations of time
series so as to alleviate the data sparsity issue. Despite their effec-
tiveness, both the efficiency issues incurred by the self-attention
and the properties of time series classification task are largely ig-
nored in these current works. Although some prior works focusing
on improving the efficiency of self-attention were developed [38],
these works mainly use heuristic strategies to perform sparse at-
tention computation without global context modeling. In this work,
we aim to tackle the efficiency bottleneck and achieve performance
improvements in the proposed FormerTime.

3 THE FORMERTIME MODEL
In this section, we first formally introduce the definition of multi-
variate time series classification (MTSC) problem. Then, we intro-
duce the overall architecture of our designed FormerTime. After
that, we elaborate the FormerTime via respectively introducing two
aspects of key designs, i.e., the hierarchical architecture and the de-
signed transformer encoder. Finally, we demonstrate the difference
between the FormerTime and other relative methods.

3.1 Problem Definitions
We introduce the definitions and notations used in the following.
D = (𝑋 1, 𝑦1), (𝑋 2, 𝑦2), ..., (𝑋𝑛, 𝑦𝑛) is a dataset containing a collec-
tion of pairs (𝑋 𝑖 , 𝑦𝑖), in which 𝑛 denotes the number of examples
and 𝑋 𝑖 denote a multivariate time series with its corresponding la-
bel denoted by 𝑦𝑖 . Each multivariate time series 𝑋 = [𝑥1, 𝑥2, ..., 𝑥𝑙]
contains 𝑙 ordered elements with𝑚 dimensions in each time step.
The task of multivariate time series classification is to learn a clas-
sifier on D so as to map from the space of inputs 𝑋 to a probability
distribution over the class 𝑦.

3.2 Model Architecture Overview
An overview of the FormerTime is depicted in Figure 1. The input
of the whole model is a set of multivariate time series, involv-
ing multiple dimensions (a.k.a. channels). For each dimension, the
time series share the same sequence length. To produce multi-scale
representations for time series data, we adopt a hierarchical archi-
tecture. Specifically, we divide the whole deep network architecture
into multiple different stages so as to generate feature maps on
various time scales. For simplicity, all stages share a similar archi-
tecture, which is composed of a temporal slice partition processing
operation and successive 𝐿𝑖 our designed transformer encoder lay-
ers. Relying upon such hierarchical architecture, the time series
representation on various scales can be effectively extracted. Mean-
while, we use the mean pooling operation over the representation
of each temporal point to denote the time series representations.
The model’s output is the predicted distribution of each possible
label class for the given input time series. The FormerTime model
can be trained end-to-end by minimizing the cross-entropy loss [7],
and the loss is propagated back from the prediction output across

the entire network. The following sections would mainly introduce
several key designs in the FormerTime.

3.3 Multi-scale Time Series Representations
Integrating information on different time scales [5] is essential to
the classification capacity in the MTSC task. However, the vanilla
transformer model only can produce fixed-scale representations
of the sequence input. Thus, we devise a hierarchical architecture
for learning time series representations on various time scales. The
key idea is that the whole model is divided into several stages so
as to hierarchically performing feature maps. Here, we vary the
time scale input for different stages by leveraging a temporal slice
partition strategy, i.e., aggregating successive neighborhood points
with a window slicing operation.

Specifically, suppose that we have sequence input𝑋 = {𝑥1, 𝑥2, ...𝑥𝑙 }
in stage 𝑗 , and the window slicing size is 𝑠 𝑗 , which denotes the scale
size of the processed time series. Every 𝑠 𝑗 successive points will
be grouped into a new temporal slice. Considering the semantic
gap issue, we then feed these temporal slices to a trainable linear
projection layer to project this raw feature to a new dimension 𝐶 𝑗 .
Notably, the weights of this linear projection layer is weight-shared,
in which we use 𝑑 𝑗 to denote the stride of projection operations. To
some extent, these temporal slices can be regarded as the “tokens”
of new time series, analogous to the relationship between word and
whole speech input. Assume that the whole model is divided into
three stages, and the fine-grained raw time series can be processed
into a new granularity version, which contains 𝑙

𝑠1
slices and each

size is 𝑠1 ×𝑚. Then, the linear projection layer project it into a new
dimension 𝐶1, and the output is reshaped to size of F1 ∈ R

𝑙
𝑠1
×𝐶1 .

After that, the normalized embeddings of each temporal slice along
with its positional embeddings are fed into the transformer encoder
with 𝐿1 layers. In the same manner, by using the feature maps of
the previous stage’s output as the input of the next stage, differ-
ent scales of time series representations, denoted by F𝑗 , can be
effectively learned by stage-wise propagation.

The primary motivation is the information density difference
between time series and language domain. Unlike the tokens in
language data, which are human-generated signals and highly se-
mantic and information-intensive, the time series are naturally
redundant, e.g., a missing point can be easily recovered from its
neighbors. The benefits of adopting temporal slice operation are
two-fold. First, the time scales of sequence data can be flexibly
transformed, naturally forcing the network to generate hierarchical
feature maps. Second, with this partitioning strategy, the sequence
length of the whole time series can be largely reduced before sent
into the encoder, saving an amount of computation consumption.

3.4 The Transformer Encoder Network
In this subsection, we will introduce our designed encoder to extract
the robust global contexts of the whole sequence input.

3.4.1 Temporal Reduction Attention. To capture the global contexts
of the whole time series, we would like to benefit from regarding
the transformer network as the encoder to perform non-linear
hidden representation transformation. One of the core designs of

WWW ’23, May 1–5, 2023, Austin, TX, USA Mingyue Cheng et al.

Q

K

V

FFN

Temporal Slice

N
orm Temporal

Reduction
Contextual
Positional
Information

Linear
Projection

Layer

Multivariate
Time Series

Te
m
po
ra
lS
lic
e

Transformer
Encoder
Network

Stage 1

Multi-Head
Self-Attention

Te
m
po
ra
lS
lic
e

Transformer
Encoder
Network

Stage 2

Te
m
po
ra
lS
lic
e

Transformer
Encoder
Network

Stage 3

Element-wise
Add

Contextual
Positional
Information

M
ea
n
Po
ol
in
g

Loss

Transformer Encoder Network

Figure 1: Illustration of the FormerTime, i.e., a efficient hierarchical transformer architecture for the MTSC task.

the vanilla transformer network is to employ a multi-head self-
attention mechanism. Each temporal point needs to be computed
the attention scores among all other sequence points with the inner
product so as to capture the long-range dependence. However, the
computation complexity incurred by the attention operation can
be very heavy, growing quadratically in the sequence length of
the input sequence. Unlike language data, the sequence length of
time series data regularly can be very long to uncover the event
of classification tasks. Directly leveraging the standard attention
computation strategy is memory-expensive, making it hard for
transformers to be applicable in time series.

To solve this dilemma, inspired by recent works [41], we present
a novel attention computation strategy named temporal reduction
attention (TRA) mechanism to replace the vanilla self-attention
strategy. The core idea of TRA is to compute the attention with a
sub-sampled version of all input points. To be more specific, similar
to standard self-attention, our TRA receives a query 𝑄 , a key 𝐾 ,
and a value 𝑉 as input, and outputs a refined feature. Details of
TRA operation in stage 𝑗 can be formulated as follows:

TRA(Q,K,V) = Concat(head0, ..., headNj)W
O, (1)

in which the Concat denotes the concatenation operation, and 𝑁𝑖

is the number of heads in the attention layer.

headj = Attention(QWQ
j ,TR(K)W

K
j ,TR(V)W

V
j), (2)

where WQ
j ∈ RCj×dhead ,WK

j ∈ RCj×dhead ,WV
j ∈ RCj×dhead are linear

projection parameters. In this way, the dimension of each head is
equal to C𝑗

𝑁 𝑗
. Here, TR indicates the temporal reduction on 𝐾 and

𝑉 , which can be written as

TR(x) = Norm(Reshape(x, Rj)WT), (3)

where x ∈ R𝑙 𝑗×𝐶 𝑗 represents a input sequence, and 𝑅𝑖 denotes the
reduction ratio of the attention layers in stage 𝑗 . Reshape(x, Rj) is
an operation of reshaping the input sequence 𝑥 to a sequence of
size 𝐿𝑗

𝑅 𝑗
andW𝑇 is a linear projection that reduces the dimension

of the input sequence to 𝐶 𝑗 . Here, we employ layer normaliza-
tion operation [40] to implement Norm. Like the original attention

computation mechanism, our Attention(·) can be represented as

Attention(q, k, v) = softmax(qk⊺√︁
dhead

)v. (4)

In this way, the computational cost of our attention operation is
1
𝑅𝑖

of standard self-attention, so our TRA can handle longer input
feature maps/sequences without requiring too many resources. The
main difference between our TRA and the prior version is that
our TRA reduces the temporal scale of K and value V before the
attention operation, largely reducing the computational/memory
overhead. Note that the capacity of global context modeling is still
well-remained in our attention layer.

3.4.2 Contextual Positional Encoding. As claimed in [9, 40], posi-
tional information is a key operation in the success of the trans-
former network. Themain reason is that the self-attention operation
can be used to preserve the order of the sequence property of in-
put data. Two types of position information in transformers have
been widely adopted, including absolute and relative encodings,
which respectively denote static and learnable embeddings. For
the former type, absolute temporal information provides helpful
cues for whenever the object would appear in the whole time se-
ries. Despite its effectiveness, it severely weakens the capacity of
temporal-invariant since each temporal slice is added with a unique
positional encoding. In fact, the temporal invariance plays a sig-
nificant role in time series classification tasks since we hope the
model to release the same response whenever the discriminative
pattern appears in the time series. Though relative positional en-
codings can greatly alleviate the aforementioned issues, the relative
encodings lack absolute position information, which is important in
classification tasks [9, 21]. Previous works have uncovered that one
of the main merits of such positional information is that absolute
information can be added for enhancing classification performance.
Besides, we also argue that these two types of positional infor-
mation actually model each temporal slice individually and only
achieve sub-optimal performance because that extracted patterns
from time series evolve in time and highly depend on their sur-
rounding points.

FormerTime: Hierarchical Multi-Scale Representations for Multivariate Time Series Classification WWW ’23, May 1–5, 2023, Austin, TX, USA

Based on the above analysis, we hold that the well-informed po-
sitional information should possess two aspects of characteristics.
First, making the input sequence permutation-variant but temporal-
invariant is a necessity for time series classification. Second, having
the ability to provide absolute information also matters. To fulfill
the two demands, we find that characterizing the contextual infor-
mation among neighboring temporal slices can be sufficient. As
shown in Figure 1, we use 1-D convolutional kernel size 𝑘 along
with 𝑘

2 zero paddings to extract the localized contextual informa-
tion as positional encodings. Note that the zero padding is vital to
make the model aware of the absolute position information.

3.4.3 Entire Transformer Encoder Network. Based on the designed
temporal reduction attention mechanism and context positional
encodings, we organize them together to form a novel transformer
encoder block for learning the time series representations. We give
a sketch of the newly designed encoder at the bottom of Figure 1.
On the basis of the design of standard transformer encoder [40],
the entire encoder is composed of successive layers of the TRA
layer and followed by a feed-forward neural network (FFN) layer.
These two layers are further wrapped with a residual connection
to avoid the the vanishing gradient problem. Particularly, we set a
trainable parameter 𝛼 , initialized with zero, according to the previ-
ous work [1]. Such a simple trick can further help the FormerTime
converge more stable.

3.5 Summary and Remarks
In the following, we summarize the characteristics of FormerTime
and discuss its relations to transformer-based and convolutional-
based approaches in the multivariate time series classification.

Relation to Transformer-based Models. Transformer architecture
has shown its superiority in global sequence modeling tasks. How-
ever, the dot-product computation in self-attention easily incurs
quadratic computation and memory consumption on sequence in-
put. Hence, the efficiency of the transformer architecture becomes
the bottleneck of applying them to time series classification tasks.
Besides, the vanilla transformer model lacks some key designs of
inductive bias, such as multi-scale representation and temporal in-
variance, which can greatly benefit the time series classification task.
Although some prior works of efficient transformer variants [38]
have been proposed, they fail to solve these two aspects of limita-
tions, simultaneously. In contrast, the proposed FormerTime not
only breaks the bottleneck of efficiency but also achieves perfor-
mance improvements in the MTSC task.

Relation to Convolutional-based Models. Recently, researchers
have demonstrated the extremely expressive capacity of convolu-
tional models in MTSC tasks. In fact, convolutional networks can
yield several aspects of strength: 1) their memory and time complex-
ity in feature extraction are not constrained by the sequence length
of the sequence input, 2) they can easily learn time series with
various scales of feature maps with varying strides and preserve
the prior capacity of temporal-invariant with the weight-sharing
mechanism for the classification task. However, convolution opera-
tion cannot achieve a global receptive field of whole sequence input
while the global context information is vital for the classification
capacity. Our proposed FormerTime not only absorbs the strength

Table 1: Statics of datasets in the experiments.

Dataset Train Size Test Size Dimensions Length Classes
AWR 275 300 9 144 25
AF 15 15 2 640 3
CT 1,422 1,436 3 182 20
CR 108 72 6 1,197 12
FD 5,890 3,524 144 62 2
FM 316 100 28 50 2
MI 278 100 64 3,000 2
SRS1 268 293 6 896 2
SRS2 200 180 7 1,152 2
UWG 120 320 3 315 8

of convolutional models but also meets the demands of long-range
dependence modeling.
4 EXPERIMENTS
4.1 Experimental Setup
4.1.1 Datasets. We perform all experiments by conducting exper-
iments on ten public datasets, which are selected from the well-
known UEA multivariate time series classification (MTSC) archive.
In reality, the UEA archive has become nearly the most widely
used multivariate time series benchmarks. We select a set of 10
multivariate datasets from the UEA archive [2] with diverse char-
acteristics in terms of the number, and the length of time series
samples, as well as the number of classes. Specifically, we choose:
ArticularyWordRecognition (AWR), Atrial Fibrillation (AF), Charac-
terTrajectories (CT), Cricket, FaceDetection (FD), FingerMovements
(FM), MotorImagery(MI), SelfRegulationSCP1 (SRS1), SelfRegula-
tionSCP2 (SRS2), UWaveGestureLibrary (UW). In these original
dataset, training and testing set have been well processed. We do
not take any processing for these datasets for a fair comparison.
We summarize the main characteristics of dataset in Table 1.

4.1.2 Compared Baselines. For comprehensive evaluation, we choose
the following prevalent baseline methods for evaluation: Shapelet
Transformation (ST) [25], Learning Shapelet (LS) [18], TST [48],
GTN [26], Informer [51], MCDCNN [50], MCNN [11], ResNet [19],
TCN [4], InceptionTime (IT) [23], MiniROCKET (MR) [13]. Among
them, ST and LS are two shapelet-based methods. TST and GTN
are two transformer-based models proposed for time series clas-
sification. Though Informer is originally proposed for time series
forecasting, we also treat it as a competitive baseline to verify the ef-
fectiveness of our FormerTime. In addition, the remaining compared
baselines are convolutional-basedmodels applied to theMTSC prob-
lem. Note that some traditional classifiers [28] are not considered
here, since it is difficult to construct hand-crafted features for all
time series. Also, we do not choose well-known distance-based
methods, like HIVE-COTE [28], as baseline due to their expensive
computation consumption. We adopt accuracy as the metric.

4.1.3 Implement Details. For learning shapelet (LS), we adopt the
codes in 1 while adopting the publicly available codes 2 to run
shapelet transformation (ST). To implement GTN, we use the source
code provided by the corresponding authors 3. We implement TST
by strictly following the network architecture settings of original
1https://tslearn.readthedocs.io/
2https://pyts.readthedocs.io/
3https://github.com/ZZUFaceBookDL/GTN

WWW ’23, May 1–5, 2023, Austin, TX, USA Mingyue Cheng et al.

Table 2: Detailed Hyper-parameter settings of the proposed FormerTime.

Datasets
Stage 1 Stage 2 Stage 3

Temporal Slice Encoder Temporal Slice Encoder Temporal Slice Encoder
AWR s_1=2,C_1=64,d_1=2

L_1=6
R_1=2
N_1=4

s_2=2,C_2=64,d_2=2

L_2=6
R_2=2
N_2=4

s_3=2,C_3=64,d_3=2

L_3=6
R_3=1
N_3=4

AF s_1=16,C_1=64,d_1=8 s_2=2,C_2=64,d_2=2 s_3=2,C_3=64,d_3=2
CT s_1=16,C_1=64,d_1=8 s_2=2,C_2=64,d_2=2 s_3=2,C_3=64,d_3=2
CR s_1=8,C_1=64,d_1=8 s_2=2,C_2=64,d_2=2 s_3=2,C_3=64,d_3=2
FD s_1=2,C_1=64,d_1=2 s_2=2,C_2=64,d_2=2 s_3=2,C_3=64,d_3=2
FM s_1=4,C_1=64,d_1=4 s_2=2,C_2=64,d_2=2 s_3=2,C_3=64,d_3=2
MI s_1=8,C_1=64,d_1=8 s_2=2,C_2=64,d_2=2 s_3=2,C_3=64,d_3=2
SRS1 s_1=2,C_1=64,d_1=2 s_2=2,C_2=64,d_2=2 s_3=2,C_3=64,d_3=2
SRS2 s_1=16,C_1=64,d_1=8 s_2=2,C_2=64,d_2=2 s_3=2,C_3=64,d_3=2
UWG s_1=8,C_1=64,d_1=8 s_2=2,C_2=64,d_2=2 s_3=2,C_3=64,d_3=2

Table 3: Classification performance of compared methods in ten datasets. Bold numbers represent the best results.

Datasets IT LS ST MCDCNN TCN MCNN ResNet MR TST GTN Informer Ours
AWR 0.9827 0.9127 0.8700 0.7800 0.9467 0.8200 0.9827 0.9720 0.9789 0.9767 0.9820 0.9847
AF 0.4400 0.2533 0.2667 0.3733 0.4933 0.3467 0.4000 0.3333 0.4000 0.4000 0.4267 0.6000
CT 0.9983 0.9866 0.7224 0.8826 0.9915 0.9238 0.9965 0.9876 0.9882 0.9783 0.9862 0.9914
CR 0.9889 0.9639 0.9722 0.6278 0.9083 0.9167 0.9972 0.9806 0.9583 0.7917 0.9778 0.9806
FD 0.6820 0.5129 0.5085 0.5000 0.6801 0.6747 0.5760 0.6065 0.6005 0.5542 0.5265 0.6872
FM 0.6000 0.4840 0.4940 0.5920 0.5880 0.5920 0.6080 0.6380 0.5900 0.5350 0.6120 0.6180
MI 0.5860 0.5180 0.6100 0.5000 0.6040 0.5980 0.5780 0.5640 N/A N/A 0.6240 0.6320
SRS1 0.8942 0.7038 0.6724 0.9079 0.9031 0.8949 0.8730 0.9352 0.8771 0.8019 0.9188 0.8867
SRS2 0.5689 0.5111 0.5300 0.5256 0.5978 0.5989 0.5622 0.5411 0.5796 0.5611 0.5767 0.5922
UWG 0.8869 0.8031 0.7769 0.8438 0.7981 0.8044 0.7994 0.9075 0.8271 0.8406 0.8363 0.8881

Average 0.7628 0.6649 0.6423 0.6533 0.7511 0.7170 0.7373 0.7466 0.7555 0.7155 0.7467 0.7861
MACs (M) 89 - - 263 283 929 132 - 408 1,565 141 98

works using PyTorch. We replace the decoder in Informer4 with a
linear classifier layer so as to adapt it for MTSC tasks. The remain-
ing baselines’ code consistently leverages the codes in 5. For full
reproducibility of the experiments, we release our codes and make
it available 6. The specific hyper-parameters of our FormerTime
are listed as follows:

• 𝑠 𝑗 : the temporal slice size of stage 𝑗 ;
• 𝐶 𝑗 : the hidden size of the output in stage 𝑗 ;
• 𝑑 𝑗 : the stride size of window slicing operation of stage 𝑗 ;
• 𝐿𝑗 : the number of transformer encoders in stage 𝑗 ;
• 𝑅 𝑗 : the temporal reduction rate in stage 𝑗 ;
• 𝑁 𝑗 : the number of attention heads of temporal reduction
attention in stage 𝑗 .

More details of hyper-parameter settings in FormerTime for specific
datasets can be found in Table 2. For common hyper-parameters
of all models, we set the embedding size as 64. The initialized
learning rate is set to 1 × 10−3 without additional processing, and
we employ Adam optimizer to guide all model training. All other
hyper-parameters and initialization strategies either follow the
suggestions from the original works’ authors or are tuned on testing
datasets. We report the results of each baseline under its optimal
hyper-parameter settings. For a fair comparison, all models are
trained on the training set and report the accuracy score on the

4https://github.com/zhouhaoyi/Informer2020
5https://timeseriesai.github.io/tsai/
6https://anonymous.4open.science/r/FormerTime-A17E/

Figure 2: Critical difference diagram over the mean ranks of
FormerTime, baseline methods.

testing set. All models are trained until achieving the best results.
All experiments in our work are repeated for 5 times with 5
different seeds, and we reported the mean value score.

4.2 Experimental Results
4.2.1 Classification Performance Evaluation. Table 3 summarizes
the classification accuracy of all compared methods while Figure 2
reports the critical difference diagram as presented in [14]. The
results of “N/A” indicates that the corresponding results cannot
be run due to the out-of-memory issue. Overall, the accuracy of
our proposed FormerTime could outperform previous classifiers
on average. Such results demonstrate the success of FormerTime
in enhancing the classification capacity in the MTSC problem. For
each dataset, the classification performance of FormerTime is either
the most accurate one or very close to the best one. These existing
proposed models typically cannot always achieve the most distinct
results. One may wonder whether the FormerTime can be effective
enough. However, the experimental results are largely consistent

FormerTime: Hierarchical Multi-Scale Representations for Multivariate Time Series Classification WWW ’23, May 1–5, 2023, Austin, TX, USA

Table 4: Experimental results w.r.t. studying the hyper-
parameter sensitivity with varying stages.

Datasets 1 2 3 4
AWR 0.9811 0.9811 0.9720 0.9767
AF 0.4222 0.4667 0.6000 0.5778
CT 0.9907 0.9909 0.9914 0.9902
CR 0.9861 0.9815 0.9806 0.9769
FD 0.6750 0.6793 0.6776 0.6748
FM 0.6200 0.6033 0.6140 0.6067
MI 0.6200 0.6267 0.6280 0.6133
SRS1 0.8760 0.8692 0.8771 0.8840
SRS2 0.5722 0.5815 0.5922 0.5889
UWG 0.9021 0.8948 0.8844 0.8844
Averge 0.7645 0.7675 0.7817 0.7774

with previous empirical studies [3, 31], i.e., one single model cannot
always achieve superior performances in all scenarios. In particular,
we observe that FormerTime could surpass other baselines to a large
margin in datasets of AF and MI, in which the sequence length of
these two datasets is very long. We guess that our temporal slice
setting can be very robust for these two datasets.

For these baseline approaches, we observe that convolutional-
based methods, like MR, exhibit strong classification performances
in some datasets, which is analogous to the experimental results of
recent empirical studies [31]. We hold the characteristics of multi-
scale representation and temporal invariance of the convolution
operations make a great contribution. Besides, in MR, the feature of
PPV, denoting the proportion of positive values of extracted deep
representations, also matters. However, for transformer-based clas-
sifiers, it seems that the performance cannot always outperform
convolutional algorithms. We guess the main reason behind the per-
formance is that: (1) the plain transformer architecture fails to learn
hierarchical feature maps from time series data, and (2) the naive po-
sitional information might not be suitable for modeling time series
since the semantic information of one single temporal point indi-
vidually modeled. Besides, compared to these deep learning-based
methods, shapelet-based methods exhibit the worst classification
performance due to a lack of poor representation capacity. However,
in shapelet-based approaches, interpretable sub-sequence patterns
can be extracted to make the model more understandable, which is
vital in some applications.

In time series classification tasks, model efficiency has always
been an important concern. Here, we also show the computation
cost by recording MACs7 of compared methods. Note that only
methods trained with end-to-end manner are reported. Though
we adopt a self-attention operation, the computation cost of our
methods can be very economical. Particularly, compared to the
standard transformer network, our proposed FormerTime could
significantly save computation costs. The main reason could be
attributed to two aspects: 1) we model the raw time series with
hierarchical architecture, which significantly shorten the sequence
length, and 2) we develop a temporal reduction layer to ensure each
input point can attend to all other data points.

7https://github.com/Lyken17/pytorch-OpCounter

Table 5: Experimental results w.r.t. studying the hyper-
parameter sensitivity w.r.t. temporal slice size.

Datasets [16,32,64] [8,16,32] [4,8,16] [2,4,8]
AWR 0.9720 0.9740 0.9820 0.9847
AF 0.6000 0.5600 0.4267 0.4400
CT 0.9914 0.9886 0.9868 0.9873
CR 0.9806 0.9806 0.9778 0.9667
FD 0.6776 0.6794 0.6823 0.6872
FM 0.6140 0.6080 0.6180 0.6040
MI 0.6280 0.6280 0.6160 0.6180
SRS1 0.8771 0.8826 0.8710 0.8867
SRS2 0.5922 0.5811 0.5856 0.5600
UWG 0.8844 0.8881 0.8781 0.8775
Averge 0.7817 0.7770 0.7624 0.7612

Table 6: Experimental results w.r.t. studying the effectiveness
of contextual positional embeddings.

Datasets None Static Learnable Ours
AWR 0.9433 0.9822 0.9811 0.9720
AF 0.4667 0.5111 0.5556 0.6000
CT 0.9821 0.9902 0.9863 0.9914
CR 0.9815 0.9676 0.9769 0.9806
FD 0.6740 0.6804 0.6774 0.6776
FM 0.5900 0.5867 0.6200 0.6140
MI 0.6233 0.5833 0.6167 0.6280
SRS1 0.8635 0.8817 0.8749 0.8771
SRS2 0.5704 0.5759 0.6018 0.5922
UWG 0.8479 0.8729 0.8677 0.8844
Averge 0.7543 0.7632 0.7758 0.7817

4.2.2 Study of Multi-scale Representations. In this part, we decide
to study the effectiveness of hierarchical feature maps in Former-
Time by setting different types of model variants w.r.t. the different
number of stages. Specifically, we report the average classification
experimental results of ten datasets in Table 4, varying the num-
ber of stages from 1 to 4. Note that the total number of layers is
consistent in these model variants to eliminate the other influence
factors. From the reported results, we observe that feature maps at
various scales can indeed perform much better than the single-scale
representation versions. Such results demonstrate the importance
of multi-scale representation in time series classification tasks. Fur-
thermore, we also empirically analyze the effectiveness of hierarchi-
cal structure by performing hyper-parameter sensitivity analysis on
the size of window slicing in temporal slice partition. The average
accuracy of ten datasets is recorded in Table 5. An attractive ex-
perimental phenomenon is that FormerTime equipped with a large
slice size yields more promising results. We guess that the semantic
information of a smaller temporal slice is too small to characterize
discriminative patterns of distinguishing other examples.

4.2.3 Study of Positional Information Encoding. In the following,
we would like to empirically verify the effectiveness of contextual
positional information. A natural choice is to replace the contex-
tual embedding with static or learnable version [40], respectively.
Moreover, we also evaluate the results of FormerTime without lever-
aging any forms of positional embedding information. The average
experimental results conducted on ten datasets are shown in Ta-
ble 6. From these results, we notice that FormerTime equipped with

WWW ’23, May 1–5, 2023, Austin, TX, USA Mingyue Cheng et al.

w/o positional embeddings w/ static embeddings w/ learnable embeddings w/ contextual embeddings

Figure 3: Normalized attention score from the first encoder block of the first stage in FormerTime: (1) without taking positional
information into account, (2) using static embeddings, (3) using learnable vectors, (4) using our contextual embeddings.

Figure 4: Left plot: Visualization of the t-SNE result of the
embedding layer output on the AF dataset. Right plot: visu-
alization of sub-sequences on raw time series data.

contextual positional information could surpass all other model
variants, verifying the effectiveness of extracting contextual infor-
mation as positional encodings. Also, FormerTime’s performance
dramatically degrades while absolutely discarding the positional
information. We believe this is reasonable because self-attention
computation is permutation-variant, whose performance would
dramatically degrade if discarding the positional information. To
further deeply understand the scheme of several types of positional
encoding, we choose one sample from SRS1 data to visualize the
attention weights of corresponding model variants. As shown in
Figure 3, unlike the widely adopted static and learnable positional
embeddings, more specific attention map patterns could be well
learned by our contextual positional information generating strate-
gies. Also, it seems that most of the temporal slices would produce
uniform attention weights if we remove the positional informa-
tion. We believe these visualized cases further demonstrate the
effectiveness of our contextual information-generating strategies.

4.2.4 Analyzing Semantic of Time Series Slice Representations. In
this part, we aim to analyze the semantic descriptions of constructed
temporal slices encoded by the embedding layer. To achieve this
goal, we apply t-SNE to reduce the embedding of each temporal slice
on an example selected from AF datasets. For better understanding,
we further map each temporal slice to the raw time series. As shown
in Figure 4, we find that the similarity of raw time series data is
well-maintained in projected vector space. Such results reflect that
the semantics of time series can be accurately represented by their
corresponding latent representations. We also observe that the
temporal slice nearby in the vector space forms some successive sub-
sequences (a.k.a. shapelets) in raw time series. This phenomenon
indicates that the embedding learned by the FormerTime retains
the potential of preserving the strength of shapelet-based methods.

Figure 5: Visualization of the representation of whole time
series on the SRS1 (left plot) and UW (right plot) datasets,
extracted by pooling operation from the last hidden layer.

4.2.5 Visualization of the Extracted Embeddings. As shown in Fig-
ure 5, we visualize the extracted feature vector from FormerTime by
applying t-SNE to reduce the dimension. Here, we randomly choose
examples from SRS1 and UWG datasets. In this figure, each point
denotes an example and the same color denotes the corresponding
original class labels. This figure suggests that the proposed Former-
Time is able to project the data into an easily separable space to
ensure good classification results.

5 CONCLUSION
In this work, instead of employing the prevalent convolutional
architecture as the main backbones, we proposed FormerTime, a
hierarchical transformer network for MTSC tasks. In FormerTime,
both the strengths of transformers and CNNs were well absorbed
in a unified model for further improving the classification capacity.
Specifically, two aspects of vital inductive bias, including multi-
scale time series representations and temporal-invariant capacity,
are incorporated for enhancing the classification capacity in the
MTSC task. Moreover, the terrible computation dilemma incurred
by the self-attention mechanism was largely overcome in the pro-
posed FormerTime, whose computation costs are acceptable for
very long-sequence time series and large-scale data. Extensive ex-
periments conducted on 10 publicly available datasets from the
UEA archive demonstrated that FormerTime could surpass previ-
ous strong baseline methods. In the future, we hope to empower
the transferability of FormerTime [8].

ACKNOWLEDGMENTS
This research was partially supported by grants from the National
Key Research andDevelopment Program of China (No. 2021YFF0901003)

FormerTime: Hierarchical Multi-Scale Representations for Multivariate Time Series Classification WWW ’23, May 1–5, 2023, Austin, TX, USA

REFERENCES
[1] Thomas Bachlechner, Bodhisattwa Prasad Majumder, Henry Mao, Gary Cottrell,

and Julian McAuley. 2021. Rezero is all you need: Fast convergence at large depth.
In Uncertainty in Artificial Intelligence. PMLR, 1352–1361.

[2] Anthony Bagnall, Hoang Anh Dau, Jason Lines, Michael Flynn, James Large,
Aaron Bostrom, Paul Southam, and Eamonn Keogh. 2018. The UEA multivariate
time series classification archive, 2018. arXiv preprint arXiv:1811.00075 (2018).

[3] Anthony Bagnall, Jason Lines, Aaron Bostrom, James Large, and Eamonn Keogh.
2017. The great time series classification bake off: a review and experimental
evaluation of recent algorithmic advances. Data mining and knowledge discovery
31, 3 (2017), 606–660.

[4] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. 2018. An empirical evaluation
of generic convolutional and recurrent networks for sequence modeling. arXiv
preprint arXiv:1803.01271 (2018).

[5] Wei Chen and Ke Shi. 2021. Multi-scale Attention Convolutional Neural Network
for time series classification. Neural Networks 136 (2021), 126–140.

[6] Mingyue Cheng, Zhiding Liu, Qi Liu, Shenyang Ge, and Enhong Chen. 2022.
Towards Automatic Discovering of Deep Hybrid Network Architecture for Se-
quential Recommendation. In Proceedings of the ACMWeb Conference 2022. 1923–
1932.

[7] Mingyue Cheng, Fajie Yuan, Qi Liu, Shenyang Ge, Zhi Li, Runlong Yu, Defu
Lian, Senchao Yuan, and Enhong Chen. 2021. Learning Recommender Systems
with Implicit Feedback via Soft Target Enhancement. Proceedings of the 44th
International ACM SIGIR Conference on Research and Development in Information
Retrieval (2021).

[8] Mingyue Cheng, Fajie Yuan, Qi Liu, Xin Xin, and Enhong Chen. 2021. Learning
transferable user representations with sequential behaviors via contrastive pre-
training. In 2021 IEEE International Conference on Data Mining (ICDM). IEEE,
51–60.

[9] Xiangxiang Chu, Zhi Tian, Bo Zhang, XinlongWang, XiaolinWei, Huaxia Xia, and
Chunhua Shen. 2021. Conditional positional encodings for vision transformers.
arXiv preprint arXiv:2102.10882 (2021).

[10] Jonathan Crabbé and Mihaela Van Der Schaar. 2021. Explaining time series
predictions with dynamic masks. In ICML. PMLR, 2166–2177.

[11] Zhicheng Cui, Wenlin Chen, and Yixin Chen. 2016. Multi-scale convolutional
neural networks for time series classification. arXiv preprint arXiv:1603.06995
(2016).

[12] Angus Dempster, François Petitjean, and Geoffrey I Webb. 2020. ROCKET: excep-
tionally fast and accurate time series classification using random convolutional
kernels. Data Mining and Knowledge Discovery 34, 5 (2020), 1454–1495.

[13] Angus Dempster, Daniel F Schmidt, and Geoffrey I Webb. 2021. Minirocket: A
very fast (almost) deterministic transform for time series classification. In ACM
SIGKDD. 248–257.

[14] Janez Demšar. 2006. Statistical comparisons of classifiers over multiple data sets.
The Journal of Machine learning research 7 (2006), 1–30.

[15] Ziheng Duan, Haoyan Xu, Yueyang Wang, Yida Huang, Anni Ren, Zhongbin Xu,
Yizhou Sun, and Wei Wang. 2022. Multivariate time-series classification with
hierarchical variational graph pooling. Neural Networks 154 (2022), 481–490.

[16] GeGao, QitongGao, Xi Yang,Miroslav Pajic, andMin Chi. [n.d.]. A Reinforcement
Learning-Informed Pattern Mining Framework for Multivariate Time Series
Classification. ([n. d.]).

[17] Hardik Goel, Igor Melnyk, and Arindam Banerjee. 2017. R2n2: Residual recur-
rent neural networks for multivariate time series forecasting. arXiv preprint
arXiv:1709.03159 (2017).

[18] Josif Grabocka, Nicolas Schilling, Martin Wistuba, and Lars Schmidt-Thieme.
2014. Learning time-series shapelets. In ACM SIGKDD. 392–401.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In IEEE CVPR. 770–778.

[20] Min Hou, Chang Xu, Zhi Li, Yang Liu, Weiqing Liu, Enhong Chen, and Jiang
Bian. 2022. Multi-Granularity Residual Learning with Confidence Estimation for
Time Series Prediction. In Proceedings of the ACMWeb Conference 2022. 112–121.

[21] Md Amirul Islam, Sen Jia, and Neil DB Bruce. 2020. How much position informa-
tion do convolutional neural networks encode? arXiv preprint arXiv:2001.08248
(2020).

[22] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar,
and Pierre-Alain Muller. 2019. Deep learning for time series classification: a
review. Data mining and knowledge discovery 33, 4 (2019), 917–963.

[23] Hassan Ismail Fawaz, Benjamin Lucas, Germain Forestier, Charlotte Pelletier,
Daniel F Schmidt, Jonathan Weber, Geoffrey I Webb, Lhassane Idoumghar, Pierre-
Alain Muller, and François Petitjean. 2020. Inceptiontime: Finding alexnet for
time series classification. DMKD 34, 6 (2020), 1936–1962.

[24] Fazle Karim, Somshubra Majumdar, Houshang Darabi, and Samuel Harford. 2019.
Multivariate LSTM-FCNs for time series classification. Neural Networks 116
(2019), 237–245.

[25] Jason Lines, Luke M Davis, Jon Hills, and Anthony Bagnall. 2012. A shapelet
transform for time series classification. In Proceedings of the 18th ACM SIGKDD
international conference on Knowledge discovery and data mining. 289–297.

[26] Minghao Liu, Shengqi Ren, Siyuan Ma, Jiahui Jiao, Yizhou Chen, Zhiguang Wang,
and Wei Song. 2021. Gated transformer networks for multivariate time series
classification. arXiv preprint arXiv:2103.14438 (2021).

[27] Zhiding Liu, Mingyue Cheng, Zhi Li, Qi Liu, and Enhong Chen. 2022. One Person,
One Model—Learning Compound Router for Sequential Recommendation. 2022
IEEE International Conference on Data Mining (ICDM) (2022), 289–298.

[28] Matthew Middlehurst, James Large, Michael Flynn, Jason Lines, Aaron Bostrom,
and Anthony Bagnall. 2021. HIVE-COTE 2.0: a new meta ensemble for time
series classification. Machine Learning 110, 11 (2021), 3211–3243.

[29] Jeeheh Oh, JiaxuanWang, and JennaWiens. 2018. Learning to exploit invariances
in clinical time-series data using sequence transformer networks. In Machine
Learning for Healthcare Conference. PMLR, 332–347.

[30] Beanbonyka Rim, Nak-Jun Sung, SedongMin, andMin Hong. 2020. Deep learning
in physiological signal data: A survey. Sensors 20, 4 (2020), 969.

[31] Alejandro Pasos Ruiz, Michael Flynn, James Large, Matthew Middlehurst, and
Anthony Bagnall. 2021. The great multivariate time series classification bake off:
a review and experimental evaluation of recent algorithmic advances. DMKD 35,
2 (2021), 401–449.

[32] Marc Rußwurm and Marco Körner. 2020. Self-attention for raw optical satellite
time series classification. ISPRS journal of photogrammetry and remote sensing
169 (2020), 421–435.

[33] Pritam Sarkar and Ali Etemad. 2020. Self-supervised ECG representation learning
for emotion recognition. IEEE Transactions on Affective Computing (2020).

[34] Patrick Schäfer and Ulf Leser. 2017. Multivariate time series classification with
WEASEL+ MUSE. arXiv preprint arXiv:1711.11343 (2017).

[35] Omer Berat Sezer, Mehmet Ugur Gudelek, and Ahmet Murat Ozbayoglu. 2020.
Financial time series forecasting with deep learning: A systematic literature
review: 2005–2019. Applied soft computing 90 (2020), 106181.

[36] Chang Wei Tan, Angus Dempster, Christoph Bergmeir, and Geoffrey I Webb.
2022. MultiRocket: multiple pooling operators and transformations for fast and
effective time series classification. DMKD (2022), 1–24.

[37] Wensi Tang, Guodong Long, Lu Liu, Tianyi Zhou, Michael Blumenstein, and Jing
Jiang. 2021. Omni-Scale CNNs: a simple and effective kernel size configuration for
time series classification. In International Conference on Learning Representations.

[38] Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. 2020. Efficient
transformers: A survey. ACM Computing Surveys (CSUR) (2020).

[39] Alasdair Tran, Alexander Mathews, Cheng Soon Ong, and Lexing Xie. 2021.
Radflow: A recurrent, aggregated, and decomposable model for networks of time
series. In Proceedings of the Web Conference 2021. 730–742.

[40] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[41] Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. 2020. Lin-
former: Self-attention with linear complexity. arXiv preprint arXiv:2006.04768
(2020).

[42] Wenhai Wang and Enze at al Xie. 2021. Pyramid vision transformer: A versatile
backbone for dense prediction without convolutions. In IEEE/CVF ICCV. 568–578.

[43] Qingsong Wen, Tian Zhou, Chaoli Zhang, Weiqi Chen, Ziqing Ma, Junchi Yan,
and Liang Sun. 2022. Transformers in time series: A survey. arXiv preprint
arXiv:2202.07125 (2022).

[44] Haixu Wu, Jialong Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. 2022.
Flowformer: Linearizing Transformers with Conservation Flows. In International
Conference on Machine Learning.

[45] ZonghanWu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and Chengqi
Zhang. 2020. Connecting the dots: Multivariate time series forecasting with graph
neural networks. In Proceedings of the 26th ACM SIGKDD international conference
on knowledge discovery & data mining. 753–763.

[46] Lexiang Ye and Eamonn Keogh. 2009. Time series shapelets: a new primitive for
data mining. In Proceedings of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining. 947–956.

[47] Yi Yin and Pengjian Shang. 2016. Forecasting traffic time series with multivariate
predicting method. Appl. Math. Comput. 291 (2016), 266–278.

[48] George Zerveas, Srideepika Jayaraman, Dhaval Patel, Anuradha Bhamidipaty,
and Carsten Eickhoff. 2021. A transformer-based framework for multivariate
time series representation learning. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining. 2114–2124.

[49] Xuchao Zhang, Yifeng Gao, Jessica Lin, and Chang-Tien Lu. 2020. Tapnet: Multi-
variate time series classification with attentional prototypical network. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, Vol. 34. 6845–6852.

[50] Yi Zheng, Qi Liu, Enhong Chen, Yong Ge, and J Leon Zhao. 2014. Time se-
ries classification using multi-channels deep convolutional neural networks. In
International conference on web-age information management. Springer, 298–310.

[51] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong,
and Wancai Zhang. 2021. Informer: Beyond efficient transformer for long se-
quence time-series forecasting. In Proceedings of the AAAI, Vol. 35. 11106–11115.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Time Series Classification
	2.2 Transformers in Time Series.

	3 The FormerTime Model
	3.1 Problem Definitions
	3.2 Model Architecture Overview
	3.3 Multi-scale Time Series Representations
	3.4 The Transformer Encoder Network
	3.5 Summary and Remarks

	4 Experiments
	4.1 Experimental Setup
	4.2 Experimental Results

	5 Conclusion
	Acknowledgments
	References

